

xLED-13080 Pin Fin LED Heat Sink Φ130mm

Features VS Benefits

- * Mechanical compatibility with direct mounting of the LED modules to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 3,500 to 9,200 lumen.
- * Thermal resistance range Rth 0.83°C/W.
- * Modular design with mounting holes foreseen for direct mounting of a wide range of LED modules and COBs.
- * Diameter 130.0mm Standard height 80.0mm, Other heights on request.
- * Forged from highly conductive aluminum.
- 2 standard colors clear anodized black anodized.

Zhaga Book 3 Spot Light Modules: Bridgelux ,Cree ,Citizen ,Edison ,GE lighting, LG Innotek ,Lumileds ,Lumens ,Luminus ,Nichia ,Osram ,Philips ,Prolight Opto,

Samsung ,Seoul ,Tridonic ,Vossloh-Schwabe ,Xicato.

- 01) Bridelux: Vero 18/22 Vero SE 18/29 LED engines;
- 02) Cree: XLamp CXA 25xx, Xlamp CXB 25xx, CXA 30xx, Xlamp CXB 30xx LED eng
- 03) Citizen: CLU036, CLU038, CLU721, CLU711, CLU046, CLU048, CLU731 LED engines;
- 04) Edison: EdiLex III COB LED engines;
- 05) GE lighting: Infusion™ LED engines;
- 06) LG Innotek: 32W, 42W, 56W LED engines;
- 07) LumiLEDS: LUXEON 1211, LUXEON 1216, LUXEON 1812, LUXEON 1825 LED eng
- 08) Lumens: Ergon-COB-2530, 2540, 3050, 3070 LED engines;
- 09) Luminus: CXM-18, CLM-22, CXM-22 LED engines;
- 10) Nichia: NFCWL036B, NFCLL036B, NFCWL060B, NFCLL060B LED engines;
- 11) Osram: SOLERIQ® S 19, Core series LED engines;
- 12) Philips: Fortimo SLM LED engines;
- 16) Prolight Opto: PABS, PABA, PACB, PANA LED engines;
- 13) Samsung: LC026B, LC033B, LC040B, LC040D, LC060D, LC080D LED engines;
- 14) Seoul Semiconductor: Acrich MJT COBs, DC COB LED engines;
- 15) Tridonic: SLE G6 19mm, SLE G6 23mm LED engines;
- 17) Vossloh-Schwabe: LUGA Shop and LUGA C LED engines;
- 18) Xicato: XSM, XIM,XTM LED engines;

Product number

Example:xLED-13080-B

Example:xLED-13080 -

Anodising Color

B-Black

C-Clear

Z-Custom

Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

The Product data table

The thermal data table

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (1-\eta L)$.
- Pd Dissipated power; Pe Electrical power; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance	Heat sink to ambient temperature rise
		Rhs-amb (°C/W)	Ths-amb (°C)
		xLED-13080	
Dissipated Power Pd(W)	15.0	1.13	17.0
	30.0	0.93	28.0
	45.0	0.89	40.0
	60.0	0.83	50.0
	75.0	0.77	58.0

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler. Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.
- P_d
 T_{junctio}
 R_{junction-case}
 R_{junction-case}
 R_{interface} (TIM)
 R_{heatsink-ambient}
 T_{ambient}
 25 °C
- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a Geometric shapes are different, the thermal resistance is different. Formula: θ = (Ths—Ta)/Pd
- θ Thermal Resistance [°C/W]; Ths Heatsink temperature; Ta Ambient
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the shell is $R_{junction\text{-}case}$, the thermal resistance of the TIM outside the package is $R_{interface\ (TIM)}$ [°C/W], the thermal resistance with heat sink is $R_{heatsink\text{-}ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].
- *Thermal resistances outside the package $R_{\text{interface (TIM)}}$ and $R_{\text{heatsink-ambient}}$ can be integrated into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used: $T_{\text{iunction}}=(R_{\text{junction-case}}+R_{\text{case-ambient}})\cdot Pd+T_{\text{ambient}}$

